
OperA and Brahms: a symphony?
Integrating Organizational and Emergent Views on

Agent-Based Modeling

Bart-Jan van Putten1,2, Virginia Dignum1, Maarten Sierhuis2, Shawn R. Wolfe3

1 Utrecht University, Intelligent Systems Group,
PO Box 80089, 3508 TB Utrecht, The Netherlands

{bputten, virginia}@cs.uu.nl

2 RIACS / NASA Ames Research Center,
Mail Stop B269-1, Moffett Field, CA 94035, USA

Maarten.Sierhuis-1@nasa.gov

3 NASA Ames Research Center, Intelligent Systems Division,
Mail Stop B269-2, Moffett Field, CA 94035, USA

Shawn.R.Wolfe@nasa.gov

Abstract. The organizational view on work systems focuses on the desired
outcomes of work, while the emergent view focuses on how the work actually
gets done. Often a gap exists between these two, because workers pursue
individual objectives in addition to the organizational objectives. Agent-based
simulations can be used to improve work practice and thereby organizational
performance. Current modeling and simulation frameworks only represent
either one of the two views. In order to model both views, we propose an
integration of two modeling and simulation frameworks, OperA and Brahms.
Using the integrated model, we are able to run simulations that show to what
degree the actual work practice differs from the organizational objectives.

1. Introduction

Organizations are intentionally formed to accomplish a set of common objectives,
defined by the policy makers of the organization. People that work for those
organizations often only partially pursue the global objectives of the organization.
Workers often pursue their individual objectives as well, frequently resulting in a gap
between the a priori designed flows of tasks and procedures reflecting the ideal
activity of the organization (i.e., the work process), and the activities that actually get
things done (i.e., the work practice) [1]. This gap does not exist only because of the
difference in objectives between individuals and the organization, but also because
many policy makers abstract from work practice when they design work systems (i.e.,
business operations). For example, it is uncommon for a job description to include
‘socialize with co-workers’, ‘drink coffee’, or ‘read e-mail’.

Human Resource Management research has recognized that ultimately employee
behaviors, rather than management practices, are the key to value creation in

organizations [2]. Policy makers of successful organizations therefore want to
understand work practice and align it with the organizational objectives. Modeling
and simulation can support the description, prescription, and prediction of work
practice [3], but also need to show in what ways work practice deviates from the
organizational objectives.

Agent-based modeling and simulation used to focus on either the individual,
‘micro’ level in a way that the collective behavior emerges from individual actions
(i.e., the bottom-up, emergent view), or on the global objectives and desired collective
behavior at a ‘macro’ level (i.e., the top-down, organizational view). In order to
bridge the gap between what the policy makers of an organization want and what the
people do, a modeling and simulation methodology is needed that integrates the
organizational and emergent views. This will allow policy makers to analyze effects
of the micro on the macro level and vice-versa [4].

Related approaches, such as S-Moise+ [5], RNS2 [6], and [7] are similar to our
research, in the sense that all aim to develop organizational models to support
different levels of coordination and autonomy. However, the difference is that they
aim to develop open, heterogeneous multi-agent systems from an engineering
perspective, whereas we aim to develop more realistic models of work practice from a
human-centered perspective. The second way in which we differ from these
approaches is that we provide means to populate the organization with agents
specified in some agent language. Thus, we show how the organizational level can be
merged with the emergent level.

In this paper we will show how two multi-agent modeling frameworks, OperA [8],
a methodology developed to represent and analyze organizational systems, and
Brahms [9], a language developed to describe work practice, have been integrated.
The combined agent-oriented system engineering method (the first step towards a
methodology) allows the modeling of both the organizational objectives and the
emerging (possibly divergent) work practice. By running simulations using the
integrated model, it is possible to determine to what degree the workers achieve the
organizational objectives. The results of these simulations are used by both policy
makers and workers themselves, to understand, test, and improve work practice.

This paper is organized as follows: in section 2 we will introduce the case of
Collaborative (Air) Traffic Flow Management. Section 3 describes OperA and
Brahms, and section 4 covers their integration into one method. In section 5 the case
study is revisited, and section 6 concludes this paper.

2. Case Study: Simulation

Air traffic in the United States of America (USA) has been projected to increase as
much as threefold by the year 2025. A simulation of this level of traffic with the
current air traffic systems shows a disproportionate and unacceptable increase in
average delay per flight. As a result, NASA is researching new technologies and
approaches to handle the problems associated with this projected traffic increase. One
promising area is Collaborative Traffic Flow Management (CTFM), which seeks to
increase the amount of collaboration between the controllers of the airspace (i.e., the

Federal Aviation Administration (FAA)) and the many airlines that use the airspace to
find beneficial solutions to traffic flow problems. A concept of operations (i.e., a
future work process) has been suggested as a specific way to address the problem
[10].

At NASA Ames Research Center, this concept of operations is being evaluated
through agent-based modeling and simulation, along with other CTFM concepts [11].
We want to know if the new, planned work processes are effective and feasible for the
stakeholders, e.g., the FAA, airlines, and passengers. Most of the work processes have
only been described on an abstract level (the organizational view), i.e., the desired
outcomes. The specific implementation of the work processes that will lead to these
outcomes still needs to be defined. This is not straightforward because it requires the
coordination of many collaborative activities among highly specialized people in
distributed and heterogeneous organizations. Additionally, it is hard to prescribe an
exact work process. People may deviate from the objectives (e.g., file the flight plan
of each flight) and violate norms, which are constraints on, or specializations of the
objectives (e.g., file the flight plan before the flight takes off). Thus, the work process
is not necessarily the work practice. Therefore, investigating varied work practice
implementations and their performance on the organizational objectives supports the
evaluation of the CTFM concept of operations. This way, we need to model both the
organizational view and the emergent view on the work practice.

The organizational view on Airline Operations Centers’ (AOC) work has been
derived from documented field observations [12], and modeled in OperA. The desired
overall behavior of the AOC is external to, and possibly conflicting with, that of the
individual workers. Thus, the actual behavior of the AOC will emerge from the
combination of the organizational objectives, determined top-down, and the collective
behavior that emerges bottom-up. This creates a need to check conformance of the
actual behavior to the desired behavior. Using a (Brahms) simulation of the AOC we
can now investigate different conceptual, future work practices and see if they meet
the organizational objectives (or not). This way, a simulation of the future operations
of the AOC can be used to evaluate and improve proposed future work practice.

3. OperA and Brahms

OperA models can not be simulated without another framework for the specification
of the agents’ behavior. This is because OperA treats agents partly as ‘black boxes’,
i.e., only the desired outcomes of their behavior are specified. However, the way in
which these outcomes should be achieved is not specified. Because of that, an OperA
model is not executable on its own. Brahms has been used to implement the agents’
behavior. This is called an ‘instantiation’ or ‘population’ of the OperA model. This
decoupling of the abstract description of the organization and the concrete description
of the individuals is useful, because it is in accordance with reality, where different
groups of people with different work styles may achieve the same objectives in
different ways.

3.1. OperA

The OperA model for agent organizations enables the specification of organizational
requirements and objectives, and at the same time allows workers to have the freedom
to act according to their own capabilities and demands [8]. An OperA model can be
seen as a recipe for collective activity; organizations are described in terms of roles,
their dependencies and groups, interactions and global norms and communication
requirements. Given that OperA assumes organizations as being open systems, it does
not include constructs to the specification of the actual agents, treating them as ‘black
boxes’ that commit to a specific (negotiable) interpretation of the organizational roles.
OperA meets the following requirements:
• Internal autonomy requirement: The internal behavior of the participating agents

should be represented independently from the structure of the society.
• Collaboration autonomy requirement: The external behavior of the participating

agents should be specified without completely fixing the interaction possibilities in
advance.

The OperA framework consists of three interrelated models. The Organizational
Model (OM) is the result of the observation and analysis of the domain and describes
the desired behavior of the organization, as determined by the organizational
stakeholders in terms of objectives, norms, roles, interactions and ontologies. The
Social Model (SM) maps organizational roles to specific agents. Agreements
concerning the roles an agent will play and the conditions of the participation are
described in social contracts. The Interaction Model (IM) specifies the interaction
agreements between role-enacting agents as interaction contracts.

A generic methodology to determine the type and structure of an application
domain is described in [8]. Organizational design starts from the identification of
business strategy, stakeholders, their relationships, goals and requirements. It results
in a comprehensive organizational model including roles, interactions, objectives, and
norms, which fulfill the requirements set by the business strategy. A brief summary of
the methodology is given in Table 1.

Table 1. Overview of OperA methodology

Scene script protocols,
interaction contracts

Design of interaction
negotiation protocols

Interaction
Level

IM

Agent admission scripts, role
enactment contracts

Design of enactment
negotiation protocols

Population
Level

SM

Role structure, interaction
structure, norms, roles, scripts

Design of internal behavior
of system

Behavior
Level

Operational roles, use cases,
normative requirements

Analysis of expected
external behavior of system

Environment
Level

Stakeholders, facilitation roles,
coordination requirements

Identifies organization’s
main characteristics:
purpose, relation forms

Coordination
Level

OM
ResultDescriptionStep

Scene script protocols,
interaction contracts

Design of interaction
negotiation protocols

Interaction
Level

IM

Agent admission scripts, role
enactment contracts

Design of enactment
negotiation protocols

Population
Level

SM

Role structure, interaction
structure, norms, roles, scripts

Design of internal behavior
of system

Behavior
Level

Operational roles, use cases,
normative requirements

Analysis of expected
external behavior of system

Environment
Level

Stakeholders, facilitation roles,
coordination requirements

Identifies organization’s
main characteristics:
purpose, relation forms

Coordination
Level

OM
ResultDescriptionStep

Organizational Models should take three dimensions of the organization into account:
(1) the functional, i.e., plans, objectives, activities, (2) the structural, i.e., roles and
groups, (3) the deontic, i.e., norms and constraints [5]. Only if all three dimensions
are represented comprehensive organizational models can be built. There is however
another requirement for an Organizational Modeling language that can be used for
work practice modeling: it needs to allow the specification and participation of
autonomous agents, because people are autonomous in most real world situations.
OperA fulfills this requirement, because it only specifies the desired outcomes of the
activities of the agents and because it takes a deontic perspective in which norms can
be violated possibly resulting in sanctions. Similar approaches that can be
investigated in the future are S-Moise+ [5] and RNS2 [6]. Other approaches, like
ISLANDER [13], do not meet these requirements because either the agent population
is specifically generated to fulfill the norms or because there is a control mechanism
that blocks all disallowed activities. This is useful for the modeling of electronic
institutions, but is not suitable for work practice modeling.

3.2. Brahms

Modeling and simulating work processes is often done at such an abstract level that
individual work practice, such as collaboration, communication, ‘off-task’ behaviors,
multi-tasking, interrupted and resumed activities, informal interactions, use of tools
and movements, is left out, making the description of how the work in an organization
actually gets done impossible. The Brahms modeling language is geared towards
modeling people’s activity behavior, making it an ideal environment for simulating
organizational processes at a level that allows the analysis of the work practice and
designing new work processes at the implementation level [3,9].

The Brahms framework consists of several interrelated models. The Agent Model
describes the behavior of individuals (i.e., people) and groups of individuals (i.e.,
communities of practice). Individuals are members of groups and inherit the behavior
of the groups. Individuals can also have additional behavior that distinguishes them
from other individuals, and they can be a member of multiple groups (i.e., multiple
inheritance). Groups can be organized in a hierarchical way, to define behavior at
different levels of abstraction. Sub-groups inherit the behavior of super-groups. This
is convenient for the modeling of common objectives and activities, and does not
limit the agents’ autonomy because anything specified on the group level can be
overloaded on the agent level. The Object Model describes non-cognitive objects
(i.e., things). Objects can be physical, or conceptual. The latter means that they only
exist within the minds of agents, and can therefore not influence and react on the
world. The Knowledge Model describes the reasoning of agents and objects, which is
based on beliefs and facts. Beliefs are propositions that represent the world state and
are internal to the agent or object. Facts are actual world states, and are global in the
simulation world. The Activity Model defines the behavior of agents and objects by
means of activities and workframes. Brahms has an activity-based subsumption
architecture by which an agent’s activities can be decomposed into sub-activities.
Activities can be interrupted and resumed, just as humans can multitask by switching
between different activities. Workframes control when activities are executed based

on the beliefs of the agent, and on facts in the world. The Communication Model
defines communication activities between agents and objects. When an agent or
object communicates, it either sends or receives beliefs from other agents or objects.
The Geography Model defines a hierarchy of geographical locations representing the
space where activities occur. Agents and objects are located in areas and can move
from area to area, possibly carrying other agents or objects, by performing a move
activity.

There are several requirements for a work practice modeling language. First, it
should be a simulation language, i.e., a language that supports the modeling of time.
Second, it should support the modeling of activities rather than goals. Third, it should
support subsumption, and reactive behavior. Brahms fulfills these requirements
because it is a BDI-like activity language. Brahms differs from Jack and Jade in that
Brahms is a compiled declarative agent-oriented language. Brahms differs from Jason
in that Jason is a goal-based language, while Brahms is an activity-based language.
Jason agents are represented using prescribed problems and plans to solve them.
Brahms is a behavioral BDI language based on a reactive subsumption architecture,
where competing activities are active at once on multiple levels. This allows for
seamless activity switching, based on context information the agent is aware of (i.e.,
has beliefs about). For a description of different multi-agent languages see [14]. For a
discussion of how the Brahms language differs from other BDI languages, see [15].

3.3. Rationale for integration of OperA and Brahms

Although OperA was developed almost 10 years later than Brahms, the philosophy
behind OperA and Brahms is similar. Brahms was developed because work processes
were often modeled too abstract, i.e., formal descriptions of work processes differed
too much from the actual work practice. Similarly, OperA tries to bridge the gap
between the official and the real-world. However, OperA and Brahms have a different
viewpoint on the solution to this problem. Brahms tries to bridge the gap between the
abstracted and the real work practice bottom-up, i.e., by observing and describing the
individual behavior of people. The modeler can then observe what collective behavior
emerges from the interaction of the individual behavior of the people: the emergent
view on agent-based modeling. OperA tries to bridge the gap top-down, by describing
the objectives of an organization. This way it defines what the result of the emergent
behavior of the collective should be, rather than describing the practice (i.e., the
individual activities and interactions) that should lead to that result: the organizational
view on agent-based modeling.

The difference in the viewpoints becomes clear when we compare the models that
result from the different methodologies. Brahms mainly consists of agents that reason
(Knowledge Model) and work (Activity Model). These are definitions of the work
that gets done, rather than the results that should be achieved. OperA defines roles,
objectives, and norms (Organizational Model). It also defines social contracts (Social
Model), which allow the modeler to define which particular agent executes which
roles, and which special norms apply. Finally, it defines interaction contracts
(Interaction Model), which allow the modeler to describe norms that apply when two
or more specific agents, enacting specific roles, interact. These are definitions of (the

restrictions on) the results that should be achieved, rather than definitions of the
process itself. This shows that OperA and Brahms are orthogonal in this respect.

OperA and Brahms are different languages. Brahms is an implementation
language. It is formal, and can be compiled to Java, and executed using the Java
virtual machine. OperA is a conceptual language, which level of formality depends on
the preferences of the modeler and on the development state of the model. Modeling
can start by defining objectives and norms in terms of natural language, and then
move gradually to pseudo-logic and finally to deontic logic. OperA semantics are
formally grounded on the temporal deontic logic LCR [16].

While Brahms is mainly a language, OperA is more of a methodology because it
provides guidelines on how to get from abstract definitions of work processes (i.e.,
objectives and norms) to more specific definitions of work processes (i.e., social
contracts). This way, there is an order in the models that are created, while in Brahms
this is completely up to the modeler.

4. Integration of OperA and Brahms

Based on the complementary viewpoints of OperA and Brahms described in the
previous section, we hypothesized that, after integration, the two frameworks could
complement each other in the following two ways: (1) OperA adds the top-down
(organizational) view to Brahms, Brahms adds the bottom-up (emergent) view to
OperA, so that both perspectives are represented, (2) simulations can be run that show
the gap between the two perspectives. In order to realize point 2, it is necessary to
first convert the OperA model to Brahms, and then to implement the actual work
practice. This is done by filling in the specific behavior of the agents, which were
treated as ‘black boxes’ in the OperA model. This results in a model that is
completely described in Brahms, represents both the organizational view and the
emergent view, and which is executable for simulation. In the following, we will
discuss how Brahms has been integrated with OperA in a way that meets these
requirements.

4.1. Language Integration

OperA consists of three main models: OM, SM and IM. Each of these models is
further subdivided into levels and structures (Table 1). If we break these constructs
further down we get OperA’s atomic constructs, some of which have been listed in
Table 2. In order to be able to convert an OperA model to a Brahms model, we have
defined Brahms equivalents for each of the OperA constructs (also in Table 2).
Sometimes an OperA construct can be represented by a single, simple Brahms
construct, other times several interrelated constructs are needed. Currently, we have
defined almost all mappings, without any major difficulties. We believe that the
mappings can be done automatically, but future work is necessary to make this
possible.

Table 2. Some OperA constructs with Brahms equivalents

OperA Brahms
role

Dispatcher ∈ RolesO

group ‘roles’ with sub-groups for each OperA role

group Roles {}
group Dispatchers memberof Roles {}

group

{Planners} ⊆ Groups
O

group ‘groups’ with sub-groups for each OperA group

group Groups {}
group Planners memberof Groups {}

objective

safety_ensured(F)
∈ ObjectivesDispatcher

workframe on group level + implementation on agent level

group Dispatchers memberof Roles {
 workframe wf_safety_ensured(Flight flight){
 do { pa_safety_ensured(Flight flight) }}}

agent Deanna memberof Dispatchers {
 primitive_activity pa_safety_ensured(Flight
flight){ // something to ensure safety, and
conclude(flight.safety_ensured = true); }}

norm

IF will_fly(F) THEN
OBLIGED released(F)

workframes + create violation object, on role level

group Dispatchers memberof Roles {
 workframe wf_norm {
 when(knownval(flight.will_fly = true) and
knownval(flight.released = false))
 do { co_norm_violation(Agent agent, Norm
norm, Situation situation, Time time); }}}

// complying agent
agent Deanna memberof Dispatchers {
 workframe wf_flight_released {
 when(knownval(flight.will_fly = true))
 do { pa_released(Flight flight); }}}

// violating agent
agent Dave memberof Dispatchers {
 workframe wf_coffee_drunk {
 when(knownval(flight.will_fly = true))
 do { pa_drink_coffee(); }}}

scene script

Π = file(Dispatcher, P)
Pattern(Π
{DONE(plan_made(Planner,
P) BEFORE
DONE(plan_sent(Planner,
Dispatcher, P) BEFORE
plan_filed(Dispatcher,
P)}

workframes + activities, on role level

group Planners memberof Roles {
 workframe wf_plan_made {
 when(knownval(plan.made = true))
 do { sendToDispatcher(Plan plan); }}}

group Dispatchers memberof Roles {
 workframe wf_plan_sent {
 when(knownval(plan.sent = true))
 do { file(Plan plan); }}}

social contract

SContract(Pete, Planner,
{FORBIDDEN(pilot_contact
ed),…})

agent membership of role-group, norm on agent level

agent Pete memberof Planners {
 workframe wf_social_contract {
 when(knownval(pilot.contacted = true))
 do { co_norm_violation(…); }}}

interaction contract

IContract(Deanna, Pete,
Scene, {…})

workframes + activities, on agent level, based on interactions with
other specific agents

agent Deanna memberof Roles {
 workframe wf_interaction_contract {
 when(knownval(plan.sendby = “Pete”))
 do { revise(plan); }}}

Space and scope limitations do not allow for an in-depth foundation and discussion of
the complete mapping. We suffice with an example of one of them, to show that the
mapping meets the internal autonomy requirement. Table 2 > row ‘objective’, shows
a part of the OperA role definition of the dispatcher, which is a common role in
Airline Operation Centers [12]. Dispatchers’ main task is to ensure the safety of
flights, which encompasses (among many other things) filing flight plans and
releasing flights. The code shows that the objective is defined on the role level, and
the activity implementing the work practice is defined on the agent level. This way
the agent determines how the activity will be executed, and as such, how the objective
will be met. For even more autonomy, it is possible to specify a workframe with a
‘when’ condition on the agent level. In that case the agent can also determine when
the activity will be executed and as such when the objective will be met. This
mapping meets OperA’s internal autonomy requirement, as it allows the designer to
define the individual behavior of agents independently from the desired behavior that
is defined on the role (organizational) level.

4.2. Guidelines for Methodological Integration

Given the different viewpoints of OperA and Brahms, it can be expected that
developers familiar with one or the other framework are used to follow different
methodological approaches to system design. In this section, we give some guidelines
towards a methodology for the integration of OperA and Brahms models. The
guidelines aim to support the modeler in determining which step should be taken in
which circumstance. They describe the direction of conversion, the order of
development, and the evaluation process for the resulting combined model.

• Modeling direction

− OperA to Brahms: Used for simulation of norm-based behavior for different
possible populations. This is the direction taken in the case study (Figure 1).

− Brahms to OperA: Used when the goal is to derive norms from existing or
emerging work practices.

• Development order
− Breadth strategy: OperA models are converted to Brahms after each level of

modeling. Because Brahms can be executed, it is easier to verify and validate,
and thus to find errors. Therefore we recommend converting to Brahms after
each model has been developed in OperA.

− Depth strategy: First all OperA models are developed and then converted at
once into Brahms. Prevents the modeler from switching her mindset between
OperA and Brahms, and is useful for complex mapping processes.

• Evaluation
− Verification: Check whether the model has been designed according to the

specification. Verification should always precede validation to avoid spread of
verification errors.

− Validation: Check whether the model accurately represents reality and thus
allows for a realistic simulation. Subject-Matter Experts can support validation.
To prevent errors from continuing in later models, validation should happen as
frequently as possible.

Build
OperA OM model

Convert to
Brahms OM

Verify
Brahms model

Validate
Brahms model

Build
OperA SM model

Convert to
Brahms SM

Verify
Brahms model

Validate
Brahms model

Build
OperA IM model

Convert to
Brahms IM

Verify
Brahms model

Validate
Brahms model

Populate
Brahms model

Populate
Brahms model

Populate
Brahms model

Fig. 1. Describes the modeling direction ‘OperA to Brahms’ using a breath first strategy, which
is the one used in the case study as described in section 5.

5. Case Study: Validation

The integration of OperA and Brahms makes it possible to run a simulation in Brahms
in which both the organizational view (e.g., roles, objectives, norms) and the
emergent view (e.g., activities, workframes) are represented. But these two views are
not necessarily aligned: the work practice may differ from the intentions of the
organization’s policy makers. Objectives may not be met, and norms may be violated.
We have therefore extended the simulation with a monitoring agent, which can detect
norm violations. (This is the simplest way, but in the future we would like to support
different types of organizations that require agents to monitor themselves or each
other.) This makes it possible to perform norm-based evaluation of the proposed
CTFM operational concepts, which are usually described from the organizational
perspective. First an OperA model of these operational concepts was developed.
Second this model was converted to Brahms following the guidelines described in
section 4. Third the resulting Brahms model was populated with different types of
agents, some working according to the objectives and norms defined in the
organizational model, and some which prefer their own objectives.

The code in Table 2 > row ‘norm’ shows the conversion of an OperA norm into
Brahms code. The norm holds for all Dispatchers and has thus been defined on the
role level. Two agents have been defined, one complying with the norm, and the other
violating the norm. When a norm is violated an object is created that contains the
identifier of the norm, the situation in which it has been violated (e.g., for which

flight), the moment in time, and the agent by which it has been violated. The
monitoring agent detects the creation of the norm violation objects, reads out their
contents, and reports them to the user of the simulation. The user can then determine
the frequency and type of the violations, and which agents are more likely to violate
which norms. These simulations show to what degree the actual work practice differs
from the organizational objectives. Eventually, this information can be used by policy
makers and workers themselves to change organizational objectives and norms, or to
improve the work practice.

6. Conclusions

The design and evaluation of work systems can be supported with agent-based
modeling and simulation that incorporates both an organizational view (top-down)
and an emergent view (bottom-up) on work practice. Most current modeling and
simulation frameworks only focus on either one of these views. Therefore we have
integrated two frameworks, each representing one of the two views. The integrated
method makes it possible to simulate work practice, and to monitor the gap between
the emergent behavior and the desired outcomes as defined by the organization’s
policy makers. This method has been applied to the CTFM concept of operations, by
investigating which population and specification of agents’ activities and interactions
leads to the desired objectives, and conversely, which objectives can be met, based on
a certain work practice.

The hypotheses for this research where that the integration of OperA and Brahms
meets the following requirements: (1) OperA adds the top-down (organizational) view
to Brahms, Brahms adds the bottom-up (emergent) view to OperA, so that both
perspectives are represented, (2) simulations can be run that show the gap between the
two perspectives. The work presented in this paper provides a proof of concept that
supports the validity of these hypotheses. However, more work is needed to improve
the integrated method, to provide formal support to these hypotheses, and to
determine the actual usefulness of norm-based evaluation of operational concepts.

This work contributes to our more general research objective: How can we
improve models of work practice by incorporating the organizational view?, What
happens when agents become aware of the fact that they are violating a norm?, What
is the influence of norms on work practice?, and: How do norms arise from work
practice? New insights in these areas will lead to more realistic models of work
practice, and thereby to improved agent-oriented system engineering methodologies.

Acknowledgements
This material is based upon work supported by NASA under award NNA07BB97C.
The research of V. Dignum is funded by the Netherlands Organization for Scientific
Research (NWO), through Veni-grant 639.021.509.

References

1. Clancey, W.J., Sachs, P., Sierhuis, M., Van Hoof, R.: Brahms: Simulating Practice for
Work Systems Design, International Journal on Human-Computer Studies 49, 831--865
(1998)

2. Colvin, A., Boswell, W.: The Problem of Action and Interest Alignment: Beyond Job
Requirements and Incentive Compensation. Human Resource Management Review 17,
38--51 (2007)

3. Sierhuis, M.: Modeling and Simulating Work Practice; Brahms: A Multiagent Modeling
and Simulation Language for Work System Analysis and Design. PhD Thesis, University
of Amsterdam, SIKS Dissertation Series No. 2001-10 (2001)

4. Dignum, V., Dignum, F., Jonker, C.M.: Towards Agents for Policy Making. In: N. David,
J. Sichman (Eds.) 9th International Workshop on Multi-Agent-Based Simulation
(MABS@AAMAS’08), May 12th, Estoril, Portugal.

5. Hübner, J., Sichman, J., Boissier O.: S-MOISE+: A middleware for developing organised
multi-agent systems. In: Boissier, O. et al. (eds.): Coordination, Organizations, Institutions
and Norms in MAS (COIN I), volume 3913 of LNCS. Springer (2006)

6. Weiss, G., Nickles, M., Rovatsos M., Fischer, F.: Specifying the intertwining of
coordination and autonomy in agent-based systems. International Journal of Network and
Computer Applications. Vol.29, (2006)

7. Van der Vecht, B., Dignum, F., Meyer, J.-J.Ch., Neef, M.: A Dynamic Coordination
Mechanism Using Adjustable Autonomy. In: COIN@MALLOW’07, Durham, UK, (2007)

8. Dignum, V., Dignum, F., Meyer, J. J.: An Agent-Mediated Approach to the Support of
Knowledge Sharing in Organizations. Knowledge Engineering Review 19(2), pp. 147--
174 (2004)

9. Sierhuis, M., Clancey, W.J., Van Hoof, R.: Brahms: A Multiagent Modeling Environment
for Simulating Work Processes and Practices. International Journal of Simulation and
Process Modelling 3(3), 134--152 (2007)

10. Idris, H., Vivona, R., Penny, S., Krozel, J., Bilimoria, K.: Operational Concept for
Collaborative Traffic Flow Management based on Field Observations. In: 5th AIAA
Aviation, Technology, Integration, and Operations Conference (2005)

11. Wolfe, S.R.: Supporting Air Traffic Flow Management with Agents. In: AAAI Spring
Symposium: Interaction Challenges for Intelligent Assistants, Stanford, CA. (2007)

12. Idris, H., Evans, A., Vivona, R., Krozel, J., Bilimoria, K.: Field Observations of
Interactions between Traffic Flow Management and Airline Operations. In: 6th AIAA
Aviation, Technology, Integration, and Operations Conference, Wichita, Kansas. (2006)

13. Esteva, M., De La Cruz, D., Sierra, C.: ISLANDER: an Electronic Institution Editor. In:
1st Int'l Joint Conf. on Autonomous Agents & Multi-Agent Systems (2002)

14. Bordini, R.H., Dastani, M., Dix, J., Seghrouchni, A.E.F.: Multi-Agent Programming:
Languages, Platforms and Applications. New York, NY: Springer Science+Business
Media, Inc. (2005)

15. Sierhuis, M.: It’s not just goals all the way down – It’s activities all the way down. In:
O'Hare, G.M.P., Ricci, A., O'Grady, M.J., Dikenelli, O. (eds.) Engineering Societies in the
Agents World VII, 7th International, Workshop, ESAW 2006, Dublin, Ireland. (2007)

16. Dignum, V., Meyer, J.J., Dignum, F., Weigand, H.: Formal Specification of Interaction in
Agent Societies. In: M. Hinchey et al. (eds.) Formal Approaches to Agent-Based Systems,
LNAI 2699, Springer (2003)

